Multiscale Oil Slick Segmentation with Markov Chain Model

نویسندگان

  • Grégoire MERCIER
  • Stéphane DERRODE
  • Wojciech PIECZYNSKI
  • Jean-Marc LE CAILLEC
  • René GARELLO
چکیده

A Markov chain model is applied for the segmentation of oil slicks acquired by SAR sensors. Actually, oil slicks have specific impact on ocean wave spectra. Initial wave spectra may be characterized by three kinds of waves, big, medium and small, which correspond physically to gravity and gravitycapillary waves. The increase of viscosity due to the presence of oil damps gravity-capillary waves. This induces a damping of the backscattering to the sensor, but also a dampening of the energy of the wave spectra. Thus, local segmentation of wave spectra may be achieved by the segmentation of a multiscale decomposition of the original SAR image. In this work, the unsupervised segmentation is achieved by using a vectorial extension of the Hidden Markov Chain (HMC) model. Parameters estimation is performed using the general Iterative Conditional Estimation (ICE) method. The problem of estimating multi-dimensional and non-Gaussian densities is solved by using a Principal Component Analysis (PCA). The algorithm has been applied on an ERS-PRI image. It yields interesting segmentation results with a very limited number of false alarms. Also, the multiscale segmentation proved to be an interesting alternative to classify marginal or degraded slicks.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Unsupervised multiscale oil slick segmentation from SAR images using a vector HMC model

This study focuses on the segmentation and characterization of oil slicks on the sea surface from synthetic aperture radar (SAR) observations. In fact, an increase in viscosity due to oil notably reduces the roughness of the sea surface which plays a major part in the electromagnetic backscattering. So, an oil spill is characterized by low-backscattered energy and appears as a dark patch in a S...

متن کامل

Unsupervised Multiscale Image Segmentation

We propose a general unsupervised multiscale featurebased approach towards image segmentation. Clusters in the feature space are assumed to be properties of underlying classes, the recovery of which is achieved by the use of the mean shift procedure, a robust non-parametric decomposition method. The subsequent classification procedure consists of Bayesian multiscale processing which models the ...

متن کامل

Multiscale Segmentation of Oil Slick in Sar Images Based on Morphological Pyramid

We propose a new approach based on the Marangoni theory, particularly a dampening of the wave spectra energy. The observation is decomposed into multiscale analysis using a pseudo morphological pyramid, named here as a alternating contextual filter, to improve the detection of local variations of the wave spectrum. The morphological thick gradient contrast is first performed with a varying stru...

متن کامل

SAR raw signal simulation of oil slicks in ocean environments

Synthetic aperture radar (SAR) raw signal simulation is a powerful tool for design of oil slick detection and interpretation systems. In this paper, the ocean simulation issues are presented, and the main problems relating to the oil presence on the sea surface are treated. Attention is focused on the electromagnetic side of the problem, with care to the sensor signatures, the dielectric, physi...

متن کامل

Multiscale Bayesian segmentation using a trainable context model

Multiscale Bayesian approaches have attracted increasing attention for use in image segmentation. Generally, these methods tend to offer improved segmentation accuracy with reduced computational burden. Existing Bayesian segmentation methods use simple models of context designed to encourage large uniformly classified regions. Consequently, these context models have a limited ability to capture...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003